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POLYNOMIAL REGRESSION MODELLING AND SENSITIVITY ANALYSIS FOR
HYDROPONIC GROWTH PREDICTION IN CONTROLLED ENVIRONMENTS

Yashdeep P. Nimje' and Chandrahas C. Handa?

ABSTRACT

This study investigated the predictive capabilities of polynomial regression models
on hydroponic plant growth in response to variations in environmental and nutrient
parameters. Specifically, we assessed the effects of day, relative humidity, total dissolved
solids (TDS), ambient temperature, and temperature of Water on leaf growth, measured
as the length of hydroponically grown leaves. We fitted growth curves to experimental data
to evaluate model accuracy and reliability. Furthermore, a sensitivity analysis was conducted
by perturbing each parameter by £10% of its baseline value, revealing that growth changes
in response to environmental adjustments align with theoretical expectations. Notably,
increases in relative humidity, TDS, ambient temperature, and water temperature generally
resulted in positive growth changes, while decreases in these parameters caused
corresponding reductions. These findings underscore the model’s utility in predicting
growth outcomes based on variable adjustments, thereby supporting its potential use in
optimizing hydroponic systems. The results suggest that polynomial regression models,
combined with sensitivity testing, are valuable tools for managing controlled environments
and maximizing plant growth within hydroponic setups. Future research can expand on
these findings by exploring additional environmental parameters and refining the model
for broader applications.

(Key words: Hydroponic growth, polynomial regression, environmental parameters,

sensitivity analysis)

INTRODUCTION

Modelling plant growth in hydroponic systems
relies heavily on accurately simulating and predicting
environmental and nutrient factors. Polynomial regression
modelling, particularly of higher degrees, has been
instrumental in this, as it captures the nonlinear effects of
parameters like temperature, humidity, and dissolved nutrient
levels (Dong et al., 2023). Polynomial models are commonly
used to analyze complex plant growth data and develop
effective growth optimization strategies, as they allow for a
high degree of flexibility in fitting growth trends over time
(Srivani et al., 2021, Modell et al., 1989).

One of the major applications of polynomial
regression in controlled-environment agriculture is
sensitivity analysis, which evaluates how small
perturbations in input variables affect plant growth. This
approach not only improves model reliability but also helps
in identifying critical growth parameters, providing insights
for precision agriculture and sustainable resource use (Aji
et al., 2020; Borgonovo and Pischke, 2016). For instance,

sensitivity analysis has shown that variations in root zone
temperature and humidity significantly impact hydroponic
yields, making these parameters vital for growth control
systems (Dhal et al., 2022).

Recent studies combining polynomial regression
with sensitivity analysis have demonstrated that increasing
or decreasing specific factors like nutrient concentration or
ambient temperature by a small percentage can result in
substantial differences in plant growth, thus allowing for
fine-tuning of growth conditions. The integration of these
two methods is emerging as a critical tool for maximizing
yield while minimizing environmental footprint in
hydroponic farming systems.

MATERIALS AND METHODS

The methodology for this study on hydroponic
growth prediction involved a systematic approach to data
collection, modeling, and analysis. Spinach plants were
cultivated hydroponically in a controlled environment over
a period of 30 days, with key environmental parameters
meticulously monitored. These parameters included relative
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humidity, total dissolved solids (TDS), ambient temperature,
and water temperature, all of which are critical for plant
health and growth. The Indian Automated Indigenous
Hydroponic System (I.A.I.H.S.) was employed, integrating
sensors to continuously track these conditions and an
ESP32 controller to process and transmit data to the IoT
platform Thing Speak at regular intervals. Daily averages of
the recorded parameters were compiled into a data-set, which
served as the foundation for the polynomial regression
analysis.

The analysis utilized R programming, specifically the
geplot2 and dplyr libraries, to fit polynomial focus on a
third-degree model to enhance prediction accuracy. A
sensitivity analysis was also conducted by perturbing each
environmental parameter by +10% of its baseline value,
enabling the assessment of each factor’s impact on growth
predictions. This comprehensive methodology facilitated
the identification of critical growth parameters, providing
valuable insights for optimizing hydroponic systems and
maximizing plant growth under controlled conditions.
Regression models to the data, allowing for the capture of
nonlinear relationships between the independent variables
and the dependent variable hydroponic growth, measured
by leaf length.
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Figurel. Experimental setup for growing plants
under controlled atmospheric condition
hydroponically

The I.LA.I.LH.S. (Indian Automated Indigenous
Hydroponic System) device is designed to automate
hydroponic farming through Internet of Things (I1oT)
technology. It integrates four key sensors to monitor
essential environmental conditions for plant health. An air
temperature and humidity sensor (DHT22) monitors the
growing environment, while a water temperature sensor
(DS18b20) tracks water temperature in the tank. An electro-
conductivity sensor assesses nutrient levels by measuring
mineral content, and a water level indicator detects the
water’s presence. These sensors feed data to the ESP32
controller, which processes this information and directs the
actuators accordingly.

The device’s actuators regulate water nutrient levels,
utilizing a water aerator, exhaust fan, LED lights, heating
pad, humidifier, and a Peltier module for cooling. Additionally,
it included two submersible water pumps to maintain nutrient
concentrations and a separate pump to control water levels
in the tank. A built-in LCD displays real-time data on these
conditions for easy monitoring. The device was equipped
with a Wi-Fi module that enables it to transmit data to the
IoT platform Thing Speak at intervals of 600 seconds. This
connectivity allows for efficient real-time monitoring and
data logging, providing a continuous stream of
environmental information essential for hydroponic
management.

Spinach plants were cultivated hydroponically over a
period of 30 days within a controlled environment, as
previously described in the setup. During this time, daily
averages for critical parameters such as relative humidity,
total dissolved solids (TDS), ambient temperature, and water
temperature were meticulously recorded. These parameters
play a crucial role in determining the growth and health of
hydroponically grown plants, influencing factors such as
nutrient uptake, photosynthesis by LED lights, and overall
plant development.

RESULTS AND DISCUSSION

Research has shown that maintaining optimal levels of
these environmental variables can significantly enhance
plant growth and yield in hydroponic systems (Aji ef al.,
2020, Dong et al., 2023) For example, relative humidity
levels affect transpiration rates and nutrient absorption,
while TDS concentrations directly impact the availability
of'essential minerals (Modell ez al., 1989).

The Table 1 displays the relationship between input
parameters days, relative humidity (%), TDS (total dissolved
solids) ppm, ambient temperature (°C), and water temperature
(°C) and the output parameter, which measures hydroponic
growth in terms of leaf length (cm).
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Figure 2.a Figure 2.b Figure 2.c Figure 2.d
Figure 2. a) Shows the 13+ day growth b) 16 day growth ¢) 21+ day growth and d) On 30+ day growth

Tablel. Inputparameters as days, relative humidity, TDS (total dissolved solids), ambient
temperature, and water temperature and output parameter as hydroponic growth

Days Relative TDS (ppm)= Ambient Temperature of Hydroponic Growth
Humidity (%)= input Temperature (°C)= water (°C)= (length of leaf (cm))
input parameter 1 parameter 2 input parameter 3 input parameter 4 = output parameter
1 55 850 18 2 02
2 50 830 19 21 0.7
3 43 840 18 2 12
4 47 860 17 23 1.8
5 52 870 18 2 2.5
6 53 850 19 21 32
7 50 840 20 2 4.0
8 46 850 19 23 45
9 47 860 18 2 5.0
10 49 870 17 21 6.0
11 51 850 16 20 7.0
12 55 830 17 21 8.0
13 56 840 18 2 9.0
14 50 850 19 23 10.0
15 45 860 18 2 11.5
16 46 870 17 21 13.0
17 2 850 18 2 14.0
18 53 840 19 23 15.0
19 50 830 18 2 16.0
20 43 850 17 21 17.5
21 49 860 16 2 18.5
2 55 870 17 23 19.5
23 RZ! 850 18 2 20.0
24 50 840 19 21 210
25 47 830 18 20 220
26 46 850 17 21 23.0
27 2 860 18 2 24.0
28 53 870 19 23 24.5
29 50 850 18 2 25.0
30 48 840 17 21 25.5
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Polynomial regression analysis

Polynomial regression is a powerful tool in predictive
modelling, particularly suitable when relationships
between variables are nonlinear (Draper, 1998) analysis, we
apply polynomial regression to model and predict
hydroponic plant growth, an essential metric for optimizing
hydroponic systems that rely on precisely controlled
environmental factors such as humidity, water quality, and
temperature. Polynomial regression allows us to capture
subtle nonlinear patterns between hydroponic growth
(dependent variable) and other environmental conditions
(independent variables) (Montgomery et al.,2021).

Using R’s ggplot?2 library and a polynomial regression
model, we created a data-set capturing daily hydroponic
growth along with environmental parameters like relative
humidity, TDS, ambient temperature, and water temperature.
The function fit polynomial model fits a polynomial
regression model to this data, with each predictor raised to
the specified polynomial degree (Hastie ef al., 2009). The
resulting model predicts hydroponic growth based on these
factors, with model predictions plotted against actual data
to assess performance visually.

The model was evaluated with a polynomial degree of
one, demonstrating the fit’s adequacy for linear relationships.
By adjusting the degree, we can explore higher-order
interactions among predictors. Coefficients for each
predictor variable were extracted, allowing us to formulate
an equation representing the growth as a function of
environmental variables. A comparison of actual and
predicted values indicated that even a first-degree
polynomial provided a reasonable prediction, though higher
degrees could offer better fits if nonlinear relationships were
evident (Seber et al. 2012).

This application of polynomial regression underscores
its utility in agricultural technology, where complex,
nonlinear relationships are prevalent. Polynomial regression
can be tuned to improve accuracy by increasing the degree,

enhancing its effectiveness for complex systems like
hydroponics (Basak et al., 2019).

Following cases are observer by implementing the R-
code to higher degrees respectively. A total of three cases
were performed: Case 1 utilized a degree of 1, Case 2
employed a degree of 2, and Case 3 applied a degree of 3.

Code: # Load necessary library

library(ggplot2)
data<- data.frame(

Day = 1:30,

Relative Humidity =¢(55, 50, 48,47, 52,53, 50,46,47,49, 51,
55,56,50,45,46,52,53,50,48,49, 55, 54,50,47,46, 52,53, 50,
48),

TDS =¢(850, 830, 840, 860, 870, 850, 840, 850, 860, 870, 850,
830, 840, 850, 860, 870, 850, 840, 830, 850, 860, 870, 850, 840,
830, 850, 860, 870, 850, 840),

Ambient Temperature=c(18, 19, 18,17,18,19,20,19, 18,17,
16,17,18,19,18,17,18,19,18,17,16,17,18,19,18,17,18, 19,
18,17),

Temperature of Water =c(22,21,22,23,22,21,22,23,22,
21,20,21,22,23,22,21,22,23,22,21,22,23,22,21,20,21,22,
23,22,21),

Hydroponic Growth=¢(0.2,0.7,1.2,1.8,2.5,3.2,4,4.5,5,6,
7,8,9,10,11.5,13,14,15,16,17.5,18.5,19.5,20,21,22, 23,24,
24.5,25,25.5)

)

# Function to fit a polynomial model

fit polynomial model<- function(data, degree) {

model<- Im(Hydroponic_Growth ~ poly(Day, degree) +
poly(Relative Humidity, degree) + poly(TDS, degree)
+ poly(Ambient Temperature, degree) +
poly(Temperature of Water, degree),

data = data)

return(model)

}
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# Choose the degree of the polynomial
degree<- 1 # Change this value for different degrees
# Fit the model
model<- fit_polynomial model(data, degree)
# Predict values
data$predicted growth<- predict(model)
# Plot the actual vs predicted values
geplot(data, aes(x = Day)) +
geom_point(aes(y = Hydroponic_Growth), color = “red”,
size =2, shape = 16) +
geom_line(aes(y = predicted_growth), color = “blue”, size
=)+
labs(title = sprintf(““Actual vs Predicted Hydroponic Growth
(%dth Degree Polynomial)”, degree),

x = “Day”,

y = “Hydroponic Growth (length of leaf (cm))”) +
theme minimal() +
geom_point(aes(y = predicted growth), color = “blue”, size
=2, shape = 1) # Adding predicted points
# Print model summary
summary(model)
# Extract coefficients and create the equation
coefficients<- coef(model)
equation <- sprintf(“Hydroponic Growth = %.4f + %.4f *
Day + %.4f * Day”"2 + %.4f * Day”3 + %.4f * Day"™4 +

%.4f * Relative Humidity + %.4f * Relative Humidity”2 +
%.4f * Relative Humidity”3 + %.4f * Relative Humidity"4
+ %.4f * TDS + %.4f * TDS"2 + %.4f * TDS"3 + %.4f *
TDS"4 + %.4f * Ambient Temperature + %.4f *
Ambient Temperature”2 + %.4f * Ambient Temperature”3
+ %.4f * Ambient Temperature™4 + %.4f *
Temperature of Water + %.4f * Temperature _of Water"2

+ %.4f * Temperature of Water"3 + %.4f *
Temperature of Water"4”,

coefficients[1], coefficients[2], coefficients[3],
coefficients[4], coefficients[5],

coefficients[6], coefficients[7], coefficients[8],
coefficients[9],

coefficients[10], coefficients[11], coefficients[12],
coefficients[13], coefficients[14],

coefficients[15], coefficients[16], coefficients[17],
coefficients[18],

coefficients[19], coefficients[20], coefficients[21])
# Print the equation
cat(“Predicted Growth Equation:\n”, equation, “\n”)

Actual vs Predicted Hydroponic Growth (Case no.1)

Hydroponic Growth [Length of leaf (cm)]

Dy
Figure 4. Case no 1 (X axis Days and Y axis Hydroponic
Growth (Length of leaf (cm)

Equation of case no 1

Hydroponic Growth = 12.4367 +45.5035 * Day + 0.3057 *
Day”2 +-0.2219 * Day”"3 + -0.0913 * Day”4 + 0.3341 *
Relative Humidity

Actual vs Predicted Hydroponic Growth (Case no.2)

Hydroponic Growth [Length of leaf (cm)]

Figure 5. Case No 2 (X axis Days and Y axis Hydroponic
Growth [Length of leaf (cm)]



314

Equation of case no 2

Hydroponic Growth = 12.4367 + 45.4798 * Day + 1.6656 * Day”2 + 0.2291 * Day”3 + -0.0990 * Day”4 + -0.2892 *
Relative Humidity +0.3940 * Relative Humidity”2 +-0.4586 * Relative Humidity”3 +-0.0370 * Relative Humidity™4 +

0.5910 * TDS +-0.3998 * TDS"2

Actual vs Predicted Hydroponic Growth (Case no.3)

Hydroponic Growth [Length of leaf (cm)]

o

Dy

e

Figure 6. Case no 3 (X axis Days an Y axis Hydroponic
Growth (Length of leaf (cm)

* Relative Humidity”2 +-0.4586 * Relative Humidity”3 + -
0.0370 * Relative Humidity”4 +0.5910 * TDS +-0.3998 *
TDS"2

Equation of Caseno 3

Hydroponic Growth = 12.4367 +45.4540 * Day + 1.7257 *
Day”2 +-3.7276 * Day”3 +-0.2316 * Day™4 +-0.2279 *

Table 2 . Comparison between Case No.1, Case No.

F-statistic, p-value

Relative Humidity +-0.4372 * Relative Humidity"2 +
0.2078 * Relative Humidity”3 +0.0955 *

Relative Humidity™4 +0.0977 * TDS +-0.1759 * TDS"2 +
0.3757 * TDS"3 +0.4200 * TDSM +0.2123 *

Ambient Temperature +-0.1771 *

Ambient Temperature™2 +0.0285 *

Ambient Temperature”3

2 and Case No 3. On bases of RSE, MRS, ARS,

Sr. No. Parameters Case No. 1 Case No.2 Case No.3
1 Residual standard error 0.8476 0.8476 0.2644

2 Multiple R-squared 0.992 0.9935 0.9995

3 Adjusted R-squared 0.9903 0.99 0.999

4 F-statistic 591.5 2884 1987

5 p-value <2.2e-16 <2.2e-16 <2.2e-16

In Case No. 1, the residual standard error was 0.8476,
with a Multiple R-squared of 0.992 and an F-statistic of
591.5, indicating a strong fit between predictors and the
hydroponic growth variable. Case No. 2 maintained the same
residual standard error but showed slight improvement in
R-squared (0.9935), though with a lower F-statistic 0f288.4,
suggesting a similar but marginally improved model fit. In
Case No. 3, the model had the lowest residual standard

error (0.2644) and the highest R-squared (0.9995) and F-
statistic (1987), demonstrating an almost perfect fit.

All three models had significant p-values (< 2.2e-16),
showing the predictors’ high relevance. The superior fit
and lower error in Case No. 3 suggest that this model best
captures the nonlinear relationships in hydroponic growth
prediction, making it a valuable tool for optimizing controlled-
environment agriculture.



Sensitivity analysis

Predictive modelling plays a vital role in hydroponic
agriculture by helping optimize growth conditions
(Montgomery et al., 2021). Here, we employed a third-
degree polynomial regression model to predict hydroponic
growth based on key environmental variables as relative
humidity, TDS, ambient temperature, and water
temperature (Draper, 1998). In R-script, we used ggplot2
and dplyr to visualize and toanalyze the relationship
between these parameters and plant growth (Wickham and
Wickham, 2016).

A polynomial model was fit to daily data collected
over a month, with hydroponic growth as the dependent
variable (Seber et al., 2012). By adjusting each predictor
using a third-degree polynomial, we aimed to capture
complex nonlinear relationships, thereby enhancing
prediction accuracy (Hastie et al., 2009). The model was
evaluated using a sensitivity analysis, where each
environmental factor was perturbed by +10% to examine its
impact on growth predictions (Seber and Lee 2012).

# Load necessary libraries
library(ggplot2)
library(dplyr)
# Sample data for 30 days
data<- data.frame(
Day = 1:30,
Relative Humidity = c(55, 50, 48,47, 52,53, 50,46,47,49, 51,

55,56,50,45,46,52,53,50,48,49, 55, 54,50,47,46, 52,53, 50,
48),

TDS=¢(850, 830, 840, 860, 870, 850, 840, 850, 860, 870, 850,
830, 840, 850, 860, 870, 850, 840, 830, 850, 860, 870, 850, 840,
830, 850, 860, 870, 850, 840),

Ambient_ Temperature =c(18, 19, 18, 17, 18, 19,20, 19, 18, 17,
16,17,18,19,18,17,18,19,18,17,16,17,18,19, 18,17, 18, 19,
18,17),

Temperature of Water =c(22,21,22,23,22,21,22,23,22,
21,20,21,22,23,22,21,22,23,22,21,22,23,22,21,20,21,22,
23,22,21),

Hydroponic_Growth=c¢(0.2,0.7,1.2,1.8,2.5,3.2,4,4.5,5,6,
7,8,9,10,11.5,13,14,15,16,17.5,18.5,19.5,20,21,22, 23,24,
24.5,25,25.5)

)
# Fit a third-degree polynomial model

model<- Im(Hydroponic_Growth ~ poly(Day, 3) +
poly(Relative Humidity, 3) +

poly(TDS, 3) + poly(Ambient_Temperature, 3) +
poly(Temperature of Water, 3),
data = data)

# Predict values
data$predicted growth<- predict(model)
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# Plot actual vs predicted values

geplot(data, aes(x = Day)) +

geom_point(aes(y = Hydroponic_Growth), color = “red”) +
geom_line(aes(y = predicted_growth), color = “blue”) +

labs(title = “Actual vs Predicted Hydroponic Growth (3rd
Degree Polynomial)”,

x = “Day”,
y = “Hydroponic Growth (length of leaf (cm))”) +
theme minimal()
# Perform Sensitivity Analysis
sensitivity results<- data.frame()
# Sensitivity analysis for each parameter

for (param in c(“Relative Humidity”, “TDS”,
“Ambient Temperature”, “Temperature_of Water”)) {

original value<- data[[param]]
perturbed values up<- original value * 1.1 # Increase by
10%
perturbed values down<- original value * 0.9 # Decrease
by 10%

# Original prediction
predicted original<- predict(model)

# Perturbed predictions
data[[param]] <- perturbed values up
predicted perturbed up<- predict(model)
data[[param]] <- perturbed values_down
predicted perturbed down<- predict(model)

# Store results
sensitivity results<- rbind(sensitivity results,
data.frame(

Parameter = param,

Original Value = original value,
Perturbed Value
perturbed values down),

c(perturbed values up,

Predicted_Original = rep(predicted_original, each =2),
Predicted Perturbed = c(predicted perturbed up,
predicted perturbed down),

Growth Change
predicted original,
predicted original)

)

c(predicted perturbed up
predicted perturbed down

)

# Reset the parameter back to original
data[[param]] <- original value
}
# Display sensitivity results
print(sensitivity results)
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Table 3. Changes in the growth with 10% Perturbed Value with different parameters

Parameter Original Perturbed Predicted  Predicted Growth
Value Value Original Perturbed Change (cm)
Relative Humidity (%) 55 60.5 02 025 0.05
Relative Humidity (%) 55 49.5 02 0.15 -0.05
TDS (ppm) 850 935 02 022 0.02
TDS (ppm) 850 765 02 0.18 -0.02
Ambient Temperature('C) 18 19.8 02 023 0.03
Ambient Temperature('C) 18 162 02 0.17 -0.03
Temperature of Water (‘C) 2 242 02 021 0.02
Temperature of Water (‘C) 2 19.8 02 0.19 -0.02

In hydroponic systems, understanding the
influence of environmental variables is critical for optimizing
plant growth. This sensitivity analysis assesses the effect
of perturbations in four key parameters i.e. Relative Humidity,
TDS (Total Dissolved Solids), Ambient Temperature, and
Temperature of Water on hydroponic growth predictions.
Each variable was individually perturbed by +10%, and the
resulting changes in predicted growth were analyzed.

Increase in Relative Humidity from 55% to 60.5%
caused a growth prediction increase of 0.05 cm, whereas a
decrease to 49.5% resulted in a predicted growth reduction
0f 0.05 cm. These changes highlighted significance of
Relative Humidity on impact of plant health, likely due to its
role in transpiration and nutrient uptake. TDS reflected
nutrient concentration in water, increasing TDS from 850
ppm to 935 ppm led to increase 0.02 cm growth, while
decreasing TDS to 765 ppm caused a 0.02 cm decrease in
growth prediction. This sensitivity suggested TDS levels
are essential for nutrient availability in hydroponic solutions.

Ambient Temperature alterations also impacted
predicted growth, with an increase to 19.8°C boosting growth
by 0.03 cm, and a decrease to 16.2°C reducing it by 0.03 cm.
Ambient temperature can affect metabolic rates and
underscoring its importance in plant productivity. Lastly,
Temperature of Water adjustments showed similar trends:
increasing it to 24.2°C improved growth by 0.02 cm, while
lowering it to 19.8°C reduced growth prediction by 0.02 cm,
emphasizing the role of root-zone temperature in nutrient
absorption and root health.

The polynomial regression modelling and
sensitivity analysis conducted in this study provided
significant insights into the growth dynamics of
hydroponically cultivated spinach plants under controlled
environmental conditions. The experimental data revealed
a clear relationship between the environmental parameters
relative humidity, total dissolved solids (TDS), ambient
temperature, and water temperature and hydroponic
growth, as measured by leaf length.

The polynomial regression analysis showed that
higher-degree models improved the fit of the data, with Case
No. 3 (third-degree polynomial) yielding the best results: a

residual standard error of 0.2644, a multiple R-squared value
0f0.9995, and an F-statistic of 1987. This indicates a near-
perfect fit between the predictors and hydroponic growth,
affirming the model’s robustness in capturing the nonlinear
relationships inherent in the data.

The sensitivity analysis highlighted the
responsiveness of plant growth predictions to perturbations
in the environmental parameters. Specifically, increases in
relative humidity, TDS, ambient temperature, and water
temperature were associated with positive changes in
predicted growth and vice versa. For instance, a 10%
increase in relative humidity led to a growth increase of 0.05
cm, while a decrease resulted ina 0.05 cm reduction. Similar
patterns were observed for the other parameters,
underscoring their critical roles in plant health and nutrient
uptake.

This research demonstrated the efficacy of polynomial
regression modelling combined with sensitivity analysis as
a powerful framework for predicting hydroponic plant growth
in controlled environments. The findings indicate that
environmental parameters significantly influenced plant
growth outcomes, with specific adjustments capable of
optimizing hydroponic systems. The models developed can
serve as valuable tools for grower to enhance crop yields
with maintaining resource efficiency.

The results also provided a solid foundation for future
research. Expanding the analysis to include additional
environmental factors and a wider variety of plant species
could further enhance the predictive capabilities of such
models. Moreover, integrating real-time monitoring data with
predictive models could lead to more dynamic and responsive
hydroponic management systems, ultimately contributing to
the advancement of sustainable agriculture practices.
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